Relations Between Hidden Regular Variation and the Tail Order of Copulas
نویسندگان
چکیده
We study the relations between tail order of copulas and hidden regular variation (HRV) on subcones generated by order statistics. Multivariate regular variation (MRV) and HRV deal with extremal dependence of random vectors with Pareto-like univariate margins. Alternatively, if one uses copula to model the dependence structure of a random vector, then upper exponent and tail order functions can be used to capture the extremal dependence structure. After defining upper exponent functions on a series of subcones, we establish the relation between tail order of a copula and tail indexes for MRV and HRV. We show that upper exponent functions of a copula and intensity measures of MRV/HRV can be represented by each other, and the upper exponent function on subcones can be expressed by a Pickands-type integral representation. Finally, a mixture model is given with the mixing random vector leading to the finite directional measure in a product-measure representation of HRV intensity measures.
منابع مشابه
Higher order tail densities of copulas and hidden regular variation
A notion of higher order tail densities for copulas is introduced using multivariate regular variation of copula densities, and densities of multivariate extremes with various margins can then be studied in a unified fashion. We show that the tail of a multivariate density can be decomposed into the tail density of the underlying copula, coupled with marginal tail transforms of the three types:...
متن کاملTail Approximation of Value-at-Risk under Multivariate Regular Variation
This paper presents a general tail approximation method for evaluating the Valueat-Risk of any norm of random vectors with multivariate regularly varying distributions. The main result is derived using the relation between the intensity measure of multivariate regular variation and tail dependence function of the underlying copula, and in particular extends the tail approximation discussed in E...
متن کاملAn Alternative Characterization of Hidden Regular Variation in Joint Tail Modeling
In modeling the joint upper tail of a multivariate distribution, a fundamental deficiency of classical extreme value theory is the inability to distinguish between asymptotic independence and exact independence. In this work, we examine multivariate threshold modeling based on the framework of regular variation on cones. Tail dependence is described by an angular measure, which in some cases is...
متن کاملNo. 2006–29 LOWER TAIL DEPENDENCE FOR ARCHIMEDEAN COPULAS: CHARACTERIZATIONS AND PITFALLS
Tail dependence copulas provide a natural perspective from which one can study the dependence in the tail of a multivariate distribution. For Archimedean copulas with continuously differentiable generators, regular variation of the generator near the origin is known to be closely connected to convergence of the corresponding lower tail dependence copulas to the Clayton copula. In this paper, th...
متن کاملTail Dependence for Heavy-Tailed Scale Mixtures of Multivariate Distributions
The tail dependence of multivariate distributions is frequently studied via the tool of copulas. This paper develops a general method, which is based on multivariate regular variation, to evaluate the tail dependence of heavy-tailed scale mixtures of multivariate distributions, whose copulas are not explicitly accessible. Tractable formulas for tail dependence parameters are derived, and a suff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Applied Probability
دوره 51 شماره
صفحات -
تاریخ انتشار 2014